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Minimal interatomic distance in Morse clusters
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Abstract. In this paper we derive a lower bound, independent from the number of atoms N , for the
minimal interatomic distances between atoms in a cluster whose total energy is modelled by means
of the so called Morse potential. A similar result was previously proven for Lennard–Jones clusters
but the proof can not be extended to Morse clusters. Besides the theoretical interest, the derivation
of this lower bound is important for the definition of efficient procedures for the computation of the
total energy of clusters with a large number of atoms.
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1. Introduction

The investigation of molecular conformation is one of the most active fields in
computational chemistry and molecular biology; given an appropriate model for
the potential energy of a molecule or of a cluster of atoms, many approaches
have been developed to find the global optimum configuration, i.e., the relative
position of atoms which corresponds to the global minimum of the potential en-
ergy. The problem itself can be considered as an essentially unconstrained high
dimensional global optimization problem in which the decision variables are the
three–dimensional coordinates of the center of each atom. Given the positions
xi, i = 1, ..., N of N atoms, or particles, a potential energy Energy(x1, ..., xN ) is
defined which expresses the contribution to the total energy due to different kinds
of interactions between particles. Then the molecular conformation problem can
be stated as the global optimization problem

min
x1,...,xN∈IR3

Energy(x1, ..., xN ).

In the literature many different models have been considered for the accurate
definition of the potential energy; many of these include pairwise interactions, as
well as more complex interactions due, e.g., to the torsion angles in the cluster.
However, it is widely recognized that even very simple models which take into
account only pairwise interactions between atoms deserve much interest, both in
theory and in practice.
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A well known and widely explored model is represented by the Lennard–Jones
(LJ) potential

LJ(x1, . . . , xN) =
∑

1�i<j�N

[
1

‖xi − xj‖12
− 2

‖xi − xj‖6

]
.

The search for globally optimal solutions of this potential energy model is still very
active. Many putative global optimum solutions were detected in (Northby, 1987)
through a method based on a search over an icosahedral lattice. Some icosahedral
solutions have been improved, e.g., in Coleman et al. (1994), Deaven et al. (1996),
Xue (1994), but a remarkable step was the detection of lower energy configurations
for some values of N which do not have an icosahedral structure. In Doye et al.
(1995), Gomez and Romero (1994) and Pillardy and Piela (1995) a face centered
cubic (FCC) solution has been detected for N = 38. Decahedral structures were
detected in Doye et al. (1995) and Doye and Wales (1995) for N=75–77,102–104.
Very recently in Leary and Doye (1999) a tetrahedral structure has been detected
for N = 98. In Locatelli and Schoen (2001) a compression technique (further
analyzed in (Doye, 2000)) has been proposed which considerably reduces the effort
needed for detecting the nonicosahedral best known solutions mentioned above.
Best known solutions up to N = 147 are reported at the web site
http://brian.ch.cam.ac.uk/∼jon/structures/LJ.html, while best known solutions for
N = 148–309 are reported at the web site
http://www.vetl.uh.edu/∼cbarron/LJ_cluster/LJpottable.html (see also Barron et al.
(1999)).

Another widely studied energy model is the so called Morse potential. The
Morse pair potential is defined as follows

E(r;ρ) = eρ(1−r)[eρ(1−r) − 2],
where ρ > 0 is a parameter. The Morse pair potential is employed to define the
Morse potential energy for a cluster of N atoms

MORSE(x1, . . . , xN ;ρ) =
∑
i<j

E(‖xi − xj‖;ρ).

For ρ = 6 the Morse pair potential and the LJ pair potential are strictly related.
Indeed, they have the same curvature at the minimum point r = 1. However, the
Morse function introduces a higher degree of flexibility, allowing to model those
situations in which the curvature is smaller (for ρ < 6) or greater (for ρ > 6). For
instance, physically meaningful values for sodium and potassium are ρ = 3.15 and
ρ = 3.17, while for C60 molecules it is ρ = 13.62.

Best known solutions for the Morse potential for different values of N and ρ
are reported at the web site
http://brian.ch.cam.ac.uk/∼ jon/structures/Morse.html (see also Doye and Wales
(1997)).
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In this paper we wish to find a lower bound, independent from N but de-
pendent on ρ, for the minimal interatomic distance at a globally optimal solution
(x∗

1 , . . . , x
∗
N) of the Morse potential energy, i.e., a lower bound for

rmin = min
i 
=j ‖x∗

i − x∗
j ‖.

The lower bound will be derived in the next section. It must be pointed out that
this problem is not only of theoretical interest but has also relevant practical con-
sequences. In Xue (1998) it has been shown that knowledge of a strictly positive
lower bound on the minimum interatomic distance is an essential assumption in
order to be able to compute the total energy inO(N) time through a special purpose
data structure, while direct methods which need to compute the distance between
each pair of atoms require O(N2) time.

2. A lower bound for the minimal interatomic distance

In Xue (1997) an analogous lower bound for rmin is given for the optimal solutions
of the LJ potential energy. In this case it is shown that a lower bound for rmin is
0.5. The proof of the result in Xue (1997) is based on an observation which can
be easily extended to the Morse potential for any value ρ > 0. Let us define the
contribution to the total Morse potential energy of the i-th atom of the optimal
solution (x∗

1 , . . . , x
∗
N) as follows

CN(i;ρ) =
∑
j 
=i
E(‖x∗

j − x∗
i ‖;ρ),

which is simply the sum of all the terms in the Morse potential energy in which the
i-th atom appears. We note that

MORSE(x∗
1 , . . . , x

∗
N ;ρ) = 1

2

N∑
i=1

CN(i;ρ).

The proof of the existence of a strictly positive lower bound on the inter-atomic
distance for globally optimal Morse cluster will proceed as follows: first it will be
shown that the contribution of each single particle to the overall energy, in a global
optimum, is negative. This is the simplest part of the proof and the only one in
which the assumption of a global optimal cluster is used; then it will be shown
that the negative contribution can be split into the sum of a positive and a negative
contribution and that the positive one is due to the pairwise interactions between
close atoms. Then it will be shown that, given a covering of IR3 with cubes of a
prescribed edge length, there exists at least a cube which contains sufficiently many
atoms; based on this result, a bound for the positive contribution to the energy is
found, from which, based upon the observation that the contribution to the total
energy given by the minimum distance pair of atoms cannot be greater than this
positive contribution, the final result is found.



178 M. LOCATELLI AND F. SCHOEN

Let us start with a simple, but fundamental, property enjoyed by globally op-
timal Morse clusters.

THEOREM 1. For a globally optimal Morse cluster, it holds that

CN(i;ρ) < 0 1 � i � N,∀ρ > 0.
Proof. The proof is completely analogous to that of a similar result in Xue

(1997) for Lennard–Jones clusters: if an atom i in the optimal solution hasCN(i;ρ) �
0 it is possible to move it at a distance greater than 1 from any other atom. In this
way CN(i;ρ) becomes negative and the total energy is reduced, thus contradicting
the optimality of the solution.

The result in Xue (1997) starts from this observation and proceeds as follows.
Let k be an atom whose minimal distance from the other atoms is equal to rmin. If
we decrease rmin we have two opposite effects.

Effect 1 The potential energy between atom k and the atom whose distance from
atom k is equal to rmin increases.

Effect 2 The number of atoms whose distance from atom k is as close as possible
to 1 is allowed to increase so that the sum of the potential energies between
these atoms and atom k decreases.

It is shown in Xue (1997) that for Lennard–Jones clusters, if rmin is small enough
(in particular for rmin � 0.5) the first effect overcomes the second one and makes it
impossible to bring the total contribution of atom k below 0, thus contradicting
the result of Theorem 1. This approach works for the Lennard–Jones potential
basically because the Lennard–Jones pair potential increases to +∞ as the distance
between two atoms decreases to 0. The same is not true for the Morse potential,
for which two atoms in the same position, i.e., with distance equal to 0, have a
finite pair potential energy. Therefore, the proof for Lennard–Jones clusters can not
be directly extended to Morse clusters. As a proof of this fact let us consider the
following example. Let us assume that an atom is in the same position of atom k, or,
equivalently, that rmin = 0. Can we discard this situation by the same argumentation
employed above? The answer is no. Indeed, let us place the remaining N−2 atoms
in the same position at distance 1 from atom k. Then the contribution of atom k is
equal to

−(N − 2)+ E(0;ρ),
and there exists N = N(ρ) such that ∀ N � N , C(k;ρ) < 0. Therefore, situations
such as the one just described can not be simply excluded by the previous argu-
mentation. We need some other way to ensure that such situations can not hold at
an optimal solution of the Morse potential energy and to find a lower bound for the
minimal interatomic distance in Morse clusters. First we need to introduce some
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notation. We denote by λ(ρ) = 1 − ln 2/ρ the unique solution of the equation
E(r;ρ) = 0 and we assume that ρ � ln 2. We note that

E(r;ρ) > 0 ∀ r < λ(ρ),
and

E(r;ρ) < 0 ∀ r > λ(ρ).
The contribution CN(i;ρ) of the i-th atom can be split into two terms:

LN(i;ρ) =
∑

j 
=i: ‖x∗
j−x∗

i ‖<λ(ρ)
E(‖x∗

j − x∗
i ‖;ρ) > 0

and

UN(i;ρ) =
∑

j 
=i: ‖x∗
j−x∗

i ‖�λ(ρ)
E(‖x∗

j − x∗
i ‖;ρ) � 0.

Obviously it holds that

CN(i;ρ) = LN(i;ρ)+ UN(i;ρ) ∀ i.
Now we consider an atom k for which the value of LN is maximum, i.e.

k ∈ arg max
i
LN(i;ρ),

and we set

LN(ρ) = LN(k;ρ).
Without any loss of generality we can assume that x∗

k = 0, i.e. that atom k is in the
origin. The following property holds trivially.

THEOREM 2. It holds that

LN(ρ) � E(rmin;ρ).
Proof. Let v1, v2 ∈ {1, . . . , N} be such that

‖x∗
v1

− x∗
v2

‖ = rmin.

Then

LN(v1;ρ) � E(rmin;ρ).
Since LN(ρ) � LN(v1;ρ), the observation is proven. �

Now let us consider the spheres Sj , j = 1, . . . with center x∗
k = 0 and radius

2j , i.e.

Sj = {x : ‖x‖ � 2j}.
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We note that

vol(Sj ) = j 3vol(S1). (1)

We consider the values

dj = | {i : x∗
i ∈ Sj } |

vol(Sj )
,

defining the densities of atoms in the optimal solution belonging to the spheres Sj .
If we denote with

d∗ = max
j�1

dj ,

the maximal density of atoms of the optimal solution in the spheres Sj , then we will
be able to obtain a lower bound on d∗. First however we need a technical result:

LEMMA 3. For any a > 13 + √
149/2

∞∑
j=2

j 3a−j � 9

(a − 1)2
(2)

Proof. From classical results on the summation of series, we have

∞∑
j=0

j 3a−j = a

(a − 1)2

(
1 + 6

(a − 1)
+ 6

(a − 1)2

)

= a
1 + 4a + a2

(a − 1)4

for a > 1. From this we obtain

∞∑
j=2

j 3a−j =
∞∑
j=0

j 3a−j − a−1

= a
(
1 + 4a + a2

)
(a − 1)4

− 1

a

= 8a3 − 5a2 + 4a − 1

(a − 1)4 a

� 8a3 − 5a2 + 4a

(a − 1)4 a

= 8a2 − 5a + 4

(a − 1)4

� 9

(a − 1)2
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which holds for a sufficiently large. In particular it can be easily seen that the
inequality holds for a > (13 + √

149)/2. �
Now we are ready to prove the result on the density of atoms.

LEMMA 4. The maximal density of atoms in the spheres Sj , j = 1, . . . , satisfies
the following inequality

d∗ � µ(ρ)LN(ρ)

vol(S1)
,

where

µ(ρ) = 1 − 18
e3ρ

(e2ρ − 1)2

The inequality is non-trivial only when µ(ρ) � 0, i.e. only for ρ sufficiently large.
In particular it is sufficient that ρ � 3.2.

Proof. First we recall that, in view of Theorem 1 it must hold that

CN(k;ρ) = LN(ρ)+ UN(k;ρ) < 0,

or, equivalently, that

UN(k;ρ) < −LN(ρ). (3)

Let, for any j � 1,

Solj = {x∗
i : x∗

i ∈ Sj \ Sj−1},
denote the set of atoms in the optimal solution belonging to the set Sj \ Sj−1 (the
set S0 is defined as the empty set). Then,

UN(k;ρ) � − | Sol1 | +
∞∑
j=2

E(2j − 2;ρ) | Solj | .

Now, let us assume that

∃ � 2 : | Sol |� 
3LN(ρ). (4)

Then, recalling also (1)

d = | ∪
i=1Soli |

vol(S)
� | Sol |

3vol(S1)
� LN(ρ)

vol(S1)
.

Since d∗ � d and µ(ρ) < 1 the result of the lemma immediately follows.
Therefore, we only need to prove the result when (4) does not hold, i.e. when

| Solj |< j 3LN(ρ) ∀ j � 2.
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In this case it follows that

U(k;ρ) � − | Sol1 | +LN(ρ)
∞∑
j=2

j 3E(2j − 2;ρ).

From Lemma 3, we obtain
∞∑
j=2

j 3E(2j − 2;ρ) =
∞∑
j=2

j 3eρ(3−2j)(eρ(3−2j) − 2)

� −2e3ρ
∞∑
j=2

j 3e−2ρj

� −2e3ρ 9

(e2ρ − 1)2

Thus

U(k;ρ) � − | Sol1 | −18LN(ρ)
e3ρ

(e2ρ − 1)2

Recalling (3), it must also hold that

− | Sol1 | −18LN(ρ)
e3ρ

(e2ρ − 1)2
< −LN(ρ),

i.e.,

| Sol1 |>
(

1 − 18
e3ρ

(e2ρ − 1)2

)
LN(ρ)

and the result of the lemma immediately follows. �
Now let us consider, for any sphere Sj a cover of this sphere with  j(!) cubes

whose edge length is ! > 0, with ! < λ(ρ). An upper bound on the number
of cubes necessary to cover Sj is given by �(4/!)�3 j 3, but, through complete
enumeration, it is possible to obtain better bounds by eliminating cubes whose
intersection with Sj is empty. As an example, the following lemma gives an upper
bound for the minimal number  j(1/3) of cubes with edge length 1/3 which are
necessary to cover Sj .

LEMMA 5. It holds that

 j(1/3) � 1256j 3.

Proof. We first derive an upper bound for  1. An obvious bound is obtained by
considering the cube

C = {(x, y, z) : −2 � x, y, z � 2},
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which contains S1, and partitioning it into 43∗33 = 1728 subcubes with edge length
1
3 . Obviously, these subcubes also form a cover of S1, so that  1 � 1728. But some
of these subcubes have an empty intersection with S1 and they can be eliminated.
Now we want to derive the number of subcubes which can be eliminated. By
symmetry we can restrict our attention to the subcubes in

C ′ = {(x, y, z) : 0 � x, y, z � 2}.
Each subcube in C ′ is identified by the coordinates(

i1

3
,
i2

3
,
i3

3

)
i1, i2, i3 ∈ {0, . . . , 5}, (5)

of its vertex closest to the origin (which is also the center of S1). For this reason the
subcube is indicated as C(i1, i2, i3). A subcube C(i1, i2, i3) can be eliminated if its
vertex (5) has distance from the origin not lower than 2, the radius of S1, i.e., if

i21

9
+ i22

9
+ i23

9
� 4.

Through complete enumeration, we can easily see that the total number of subcubes
in C ′ which can be eliminated is 59. By symmetry this number is multiplied by 8 to
give the total number of subcubes which can be eliminated in cube C. Therefore,

 1(1/3) � 1728 − 59 ∗ 8 = 1256.

What has been proven above for S1 can be immediately extended to Sj to give the
upper bound 1256 ∗ j 3 for  j(1/3). �

The following lemma gives a lower bound for the number of atoms contained
in at least one subcube with edge length !.

LEMMA 6. There exists at least one cube with edge length ! containing at least

β =
⌈
µ(ρ)LN(ρ)

 1(!)

⌉

atoms of the optimal solution.
Proof. Given the density dj , j � 1, of atoms belonging to the optimal solution

and contained in the sphere Sj , it holds, in view of (1) that

vol(Sj )dj = j 3vol(S1)dj

It follows that at least one of the j 3 1(!) cubes with edge length ! which cover Sj ,
contains, in its intersection with Sj , at least⌈

j 3vol(S1)dj

 1(!)j 3

⌉
=
⌈

vol(S1)dj

 1(!)

⌉
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atoms of the optimal solution. In view of Lemma 4, for some  � 1 it holds that⌈
vol(S1)d

 1(!)

⌉
�
⌈
µ(ρ)LN(ρ)

 1(!)

⌉
,

as we wanted to prove. �
Now we can proceed towards finding a lower bound on the minimal interatomic

distance, which is the main aim of this paper. Before proceeding, we still need
another technical result. Let C be the unit cube in IR3, [0, 1]3, and let us assume
that it has been subdivided into eight equal cubes of edge length 1/2. Let us assume
that two points, X and Y are chosen in the unit cube such that X ∈ [0, 1/2]3 and
Y ∈ [1/2, 1]3. Then the following result holds.

LEMMA 7. The minimal distance between any point in the cube and the points X
and Y is at most

√
6/2, i.e.

max
Z∈C

min{‖Z − X‖, ‖Z − Y‖} �
√

6

2
;

this bound cannot be improved.
Proof. Any point Z in the unit cube belongs to one of the eight cubes of edge

length 1/2 in which the unit cube has been subdivided. If Z belongs to the cube
containing either X or Y , the thesis is obviously satisfied. Otherwise, Z belongs
to one of the remaining six cubes. Any such cube has a two-dimensional face in
common with either [0, 1/2]3 or [1/2, 1]3. Thus Z belongs to a parallelepiped
containing either X or Y , whose edges measure 1, 1/2 and 1/2 respectively and
whose diameter is thus

√
6/2. The bound cannot be improved, as it is immediately

seen choosing for example X = (0, 0, 0), Y = (1, 1/2, 1/2), Z = (0, 1, 1). �
Next lemma gives a lower bound for the value LN(h;ρ) of at least one atom h of
the optimal solution.

LEMMA 8. If ρ is sufficiently large and ! and ρ are such that

√
3!+ ln 2

ρ
< 1

then

LN(ρ) � L∗(!, ρ) = max




E
(√

6
2 !;ρ

)
µ(ρ)

2 1(!)

(
E
(√

6
2 !;ρ

)
+ E

(√
3!;ρ

))
− 1

(6)

E
(√

3
2 !;ρ

)
µ(ρ)

4 1(!)

(
E
(√

3
2 !;ρ

)
+ 3E

(
3
2!;ρ

))− 1



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Proof. In view of Lemma 6 there exists at least one cube C with edge length
! containing at least β atoms of the optimal solution. Let us subdivide this cube
into eight equal cubes, each one with edge length !/2. Let us call ‘opposite’ any
two such subcubes which have only a vertex in common. There are only two
possibilities:
1. there exist at least two opposite cubes each of which contains at least an atom;
2. in any pair of opposite cubes at least one of the cubes contains no atom. Thus

all atoms are contained in at most 4 subcubes.
Let us first consider the first situation; thanks to Lemma 7, two spheres of radius
!
√

6/2 centered in such two atoms cover the cube and, thus, contain all the atoms
in the cube. Then, by symmetry, there exists at least an atom x∗

h in one of these
two subcubes such that at least β1 � β/2 of the atoms of the cube C are within a
distance of !

√
6/2 from x∗

h ; let us denote by S the sphere centered in x∗
h with radius

!
√

6/2. Then

∣∣∣∣x∗
h − x∗

j

∣∣∣∣ �




√
6

2 ! if x∗
j ∈ C ∩ S

√
3! otherwise

.

From the hypothesis, it holds that
√

3! < λ(ρ); thus

LN(h;ρ) =
∑

j 
=h: ‖x∗
h−x∗

j ‖<λ(ρ)
E(‖x∗

h − x∗
j ‖;ρ)

� (β1 − 1) E

(√
6

2
!;ρ

)
+ (β − β1) E

(√
3!;ρ

)

and, recalling that E
(√

6
2 !;ρ

)
> E

(√
3!;ρ

)
, we further obtain

LN(h;ρ) �
(
β

2
− 1

)
E

(√
6

2
!;ρ

)
+ β

2
E
(√

3!;ρ
)

;

as LN(ρ) � LN(h;ρ), it follows immediately that

LN(ρ) � β

2

(
E

(√
6

2
!;ρ

)
+ E

(√
3!;ρ

))
− E

(√
6

2
!;ρ

)
.

Now, recalling the definition of β,

LN(ρ) � LN(ρ)µ(ρ)

2 1(!)

(
E

(√
6

2
!;ρ

)
+ E

(√
3!;ρ

))
− E

(√
6

2
!;ρ

)
.

from which

LN(ρ)

(
µ(ρ)

2 1(!)

(
E

(√
6

2
!;ρ

)
+ E

(√
3!;ρ

))
− 1

)
� E

(√
6

2
!;ρ

)
.
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Noticing that, if ρ → ∞, µ(ρ)→ 1 and

E

(√
6

2
!;ρ

)
+ E

(√
3!;ρ

)
→ +∞,

the coefficient of LN(ρ) will be positive for ρ big enough, the thesis immediately
follows.

If on the other hand in every pair of opposite cubes there always exists an empty
cube, it is immediately seen that all the atoms must lie inside four of the eight
subcubes, so that there must exist a cube of edge length !/2 containing at least β/4
atoms. Chosen any atom x∗

h in such a cube it is immediately seen that β/4−1 atoms
are within !

√
3/2 distance from it; recalling that no atom is placed in the subcube of

edge length !/2 having only a vertex in common with the one containing x∗
h , each

of the remaining 3β/4 atoms lies in a parallelepiped with edge lengths !, !, !/2
and, thus, they are within a maximum distance of√

2!2 + !2

4
= 3

2
!

from x∗
h . Thus, following a similar proof as given above, it is readily seen that, in

this case,

LN(ρ)

(
µ(ρ)

 1(!)

1

4

(
E(

√
3

2
!;ρ)+ 3E(

3

2
!;ρ)

)
− 1

)
� E

(√
3

2
!;ρ

)
.

From this the thesis follows. �
Now we are ready for the final theorem.

THEOREM 9. If ρ is large enough and ! is such that
√

3! + ln 2
ρ
< 1, then the

minimal interatomic distance rmin between two atoms of an optimal solution of the
Morse potential satisfies the following condition:

E(rmin;ρ) � L∗(!, ρ). (7)
Proof. Recalling Theorem 2:

E(rmin;ρ) � LN(ρ);
the thesis immediately follows. �

Condition (7) can now be applied to derive lower bounds for some values of
ρ. For instance, choosing ! = 1/3 it holds  1(!) � 1256 and it can be seen that
Theorem 7 holds provided that ρ � 6.3 approximately. For instance, if ρ = 7 the
following results hold:

µ(7) ≈ 0.98359 E

(√
6

6
; 7

)
≈ 3836.2 E

(√
3

3
; 7

)
≈ 332.79
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and

E

(√
3

6
; 7

)
≈ 20841.35 E (1; 7) ≈ 1030.40

so that condition (7) becomes

E(rmin; 7) � max

{
3836.2

0.98359
2512 (3836.2 + 332.79) − 1

≈ 6066.1

20841.35
0.98359

1256
1
4 (20841.35 + 3 × 1030.40) − 1

≈ 5655.0

}

and, numerically solving the equation E(rmin, 7) = 6066.1 the bound

rmin � 0.37599

is obtained. The table below reports some results on the minimal interatomic dis-
tance for different values of ρ:

ρ rmin

7 0.376
8 0.468
9 0.528

10 0.574
11 0.613
12 0.644
13 0.672
14 0.695
15 0.715

We also observe that, when ρ → ∞,

E
(√

6
6 ;ρ

)
µ(ρ)

2512

(
E
(√

6
6 ;ρ

)
+ E

(√
3

3 ;ρ
))

− 1
→ 2512

and

E
(√

3
6 ;ρ

)
µ(ρ)

4×1256

(
E
(√

3
6 ;ρ

)
+ 3E

(
1
2;ρ

))− 1
→ 5024

However we also have that, if ! < 1, E(!, ρ) → ∞ as ρ → ∞, so that rmin must
converge to 1, as expected.
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2.1. THE CASE ρ = 6

We would also like to be able to find a lower bound for the minimal interatomic
distance when ρ = 6, a case in which the resulting clusters have a structure which
is almost identical to that of Lennard-Jones ones; however, the reasoning which
led us to discover lower bounds for ρ � 7 does not hold for the case ρ = 6 as
the denominator in the first term in (6) becomes negative; the second term can be
evaluated as 33 264. In order to be able to find a lower bound, further refinements
are necessary. A possibility is to iterate the reasoning which led to Lemma 8 with
a finer subdivision of the cube. Let us assume that the cube with edge length 1/3
is subdivided into eight subcubes, each of edge length 1/6; the subcube C ′ with
the highest number of atoms will contain at least β8 atoms; let us assume that this
subcube is further subdivided into eight subcubes of edge length 1

12 . There are
two possibilities: either two of these subcubes with only a vertex in common both
contain an atom of the global optimum, or the β

8 atoms belong to only four of the
eight subcubes. We can thus follow a reasoning similar to that which led us to
Lemma 8; however, we can take also into account the fact that the 7

8β remaining
atoms cannot be concentrated in few subcubes. It is easy to show that a valid bound
can be obtained by observing that no more than 3

8β atoms may belong to the three
subcubes of edge length 1

6 which have a planar face in common with C ′, no more
than 3

8β can be placed in the three subcubes which have only an edge in common
with C ′, while at most 1

8β belong to the subcube which is opposite to C ′. These
two cases correspond respectively to

E( 1
12

√
6, 6)

µ(6)
1256(

1
16E(

1
12

√
6, 6)+ 1

16E(
√

3
6 , 6)+ 3

8E(
1
6

√
6, 6)+ 3

8E(
1
2 , 6)+ 1

8E(
1
3

√
3, 6))− 1

,

(approximately equal to 41 270), and

E( 1
12

√
3, 6)

µ(6)
1256(

1
32E(

1
12

√
3, 6)+ 3

32E(
3
12 , 6)+ 3

8E(
1
6

√
6, 6)+ 3

8E(
1
2 , 6)+ 1

8E(
1
3

√
3, 6))− 1

(≈ 41 203). It is then readily obtained that LN(6) is bounded by the maximum
between 41 270, 41 203 and 33 264, from which

E(rmin, 6) � 41270.,

which leads to the lower bound

rmin � 0.11352

valid for ρ = 6. It is still unclear what is the minimum value of ρ for which it is
possible to derive positive lower bounds on the minimum interparticle distance.
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3. Conclusion

In this paper a lower bound for the minimum interatomic distance between atoms
in Morse clusters has been derived. A similar result, but with a different proof tech-
nique, was proven in Xue (1997) for Lennard-Jones clusters. In the proof proposed
here first a lower bound for the energy due to the interactions of a single atom
with other atoms close to it has been derived in Lemma 8, and then, by combining
the bound with the result in Theorem 2, it is shown that the minimal interatomic
distance can not fall below a threshold depending on ρ but not on N . Besides the
theoretical interest of the result, it was shown in Xue (1998) that the lower bound
can be employed to build data structures which enable to define fast procedures for
the computation of the energy of clusters with very large number of atoms.
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